skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Macedo, Marcia Nunes"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Amazon basin is experiencing severe droughts that are expected to worsen with climate change. Riverine communities are especially vulnerable to these extreme events. This study investigates the experiences of Brazilian Amazonian communities during droughts occurring from 2000-2020. We assess the distribution of settlements at risk of prolonged isolation during extreme low-water periods, along with impacts reported in digital news outlets. Using historic time series of river levels from 90 gauges, we look at how long droughts lasted in regions with reported impacts. Results indicate that the droughts in 2005, 2010, and 2016 were the most severe, with over an additional month of low water levels in those years. Such drought events routinely disrupt inland water transport and isolate local populations, limiting access to essential goods (food, fuel, medicine) and basic services (healthcare, education). Given this new reality, Amazon countries must develop long-term strategies for mitigation, adaptation, and disaster response. 
    more » « less
  2. Abstract Tropical forest fragmentation from agricultural expansion alters the microclimatic conditions of the remaining forests, with effects on vegetation structure and function. However, little is known about how the functional trait variability within and among tree species in fragmented landscapes influence and facilitate species’ persistence in these new environmental conditions. Here, we assessed potential changes in tree species’ functional traits in riparian forests within six riparian forests in cropland catchments (Cropland) and four riparian forests in forested catchments (Forest) in southern Amazonia. We sampled 12 common functional traits of 123 species across all sites: 64 common to both croplands and forests, 33 restricted to croplands, and 26 restricted to forests. We found that forest-restricted species had leaves that were thinner, larger, and with higher phosphorus (P) content, compared to cropland-restricted ones. Tree species common to both environments showed higher intraspecific variability in functional traits, with leaf thickness and leaf P concentration varying the most. Species turnover contributed more to differences between forest and cropland environments only for the stem-specific density trait. We conclude that the intraspecific variability of functional traits (leaf thickness, leaf P, and specific leaf area) facilitates species persistence in riparian forests occurring within catchments cleared for agricultural expansion in Amazonia. 
    more » « less
  3. Hydropower dams are touted as one of the cleanest forms of energy production, yet they are associated with severe environmental impacts on both the physical structure and functioning of river ecosystems. The threat is particularly acute in the Brazilian Cerrado—a biodiverse savanna region, spanning over 2 million km2, that concentrates the headwaters of several critical South American watersheds. Our study analyzed the current distribution of large and small hydroelectric plants in the Cerrado and focused on understanding their effect on land use changes. We also propose a Dam Saturation Index (DSI) to help spur more integrated planning for this region. Results indicate that the Cerrado river basins contains 116 (30%) of Brazil’s large hydroelectric plants and 352 (36%) of its small hydroelectric plants. Moreover, these plants spurred significant land use changes within a 5-km buffer of the dams, with over 2255 km2 of native vegetation cleared by 2000 and an additional 379 km2 in the ensuing 20 years, could reach ~1000 km2. Based on the historical anthropization process in the Brazilian savannas, we expect new crops, pastures, and urban equipment to be incorporated into this landscape, with different impact loads. 
    more » « less